Abstract Submitted
for the DNP20 Meeting of
The American Physical Society

Probing UCNγ Systematic Effects Through Neutron Tracking Simulations
FRANCISCO GONZALEZ, Indiana Univ - Bloomington, UCNTAU COLLABORATION — The UCNγ experiment at Los Alamos National Laboratory measures the neutron lifetime by storing ultracold neutrons (UCN) in a magneto-gravitational trap for variable holding times. Potential UCN loss mechanisms besides β-decay lead to systematic uncertainties. In particular, UCN with energies above the trapping potential could escape during storage; this effect is minimized through the use of a cleaner lowered into the trap prior to the storage period, and cleaned neutrons are counted using a new “active” UCN cleaner. Possible time dependent changes in the phase-space distribution of UCN could lead to changes in the detection efficiency or exacerbate over-threshold neutron losses. This effect is reduced through in-situ detection, and quantified by lowering the primary detector in steps to probe various UCN energies. A custom Monte Carlo simulation of UCN trajectories has been developed on Indiana University's Big Red 3 supercomputing cluster to model UCN dynamics and constrain systematic effects. We will present results of these simulations as part of an effort to reduce UCNγ's total uncertainty to 0.2s.

Francisco Gonzalez
Indiana Univ - Bloomington

Date submitted: 30 Jun 2020