Abstract Submitted for the DNP20 Meeting of The American Physical Society

Analysis of the high-statistics UCN τ dataset ERIC FRIES, Caltech, UCN τ COLLABORATION — There have been various measurements of the free neutron lifetime (τ_n) using either cold neutron beams, or ultracold neutrons (UCN) stored in a trap. There is a ~ 4σ discrepancy in measured lifetimes between the two methods. The UCN τ experiment at Los Alamos Neutron Science Center uses an asymmetric magneto-gravitational trap to store UCN and counts the UCN remaining in the trap after various holding times to measure τ_n . During 2017 and 2018, the UCN τ collaboration gathered roughly seven times as much data as in the 2016 run cycle. Three independent analyses of these data are in progress. We expect our analyses to result in a measurement of τ_n with statistical uncertainty below 0.3 s and systematic uncertainty below $\stackrel{+0.2}{-0.1}$ s. Here we present the methods used to extract τ_n and estimate the statistical uncertainty of the measurement, and outline the methods used to measure the dominant systematic effects.

> Eric Fries Caltech

Date submitted: 01 Jul 2020

Electronic form version 1.4