Probing 3He and 3H in the Quasi-Elastic Regime1 NATHALY SANTIESTEBAN, University of New Hampshire, E12-11-112 COLLABORATION — Quasi-elastic electron scattering was used to probe nucleons on the nucleus of the mirror 3He and 3H nuclei, in a Q^2 range of 0.5-3GeV2/c2 in Hall A at Jefferson Lab. The unique sealed gas targets contained 53.37 mg/cm2 and 85.1 mg/cm2 of 3He and 3H, respectively. The beam energies were 2.2 GeV and 4.3 GeV, with a maximum current of 22 μA. This talk presents the details of the physics analysis and the preliminary results of the 3He(e,e$'$) and 3H(e,e$'$) data and how it can be used to learn about the magnetic form factor of the neutron.

1On behalf of the E12-11-112 Collaboration