Abstract Submitted for the DNP20 Meeting of The American Physical Society

Probing ³**He and** ³**H in the Quasi-Elastic Regime**¹ NATHALY SANTIESTEBAN, University of New Hampshire, E12-11-112 COLLABORATION — Quasi-elastic electron scattering was used to probe nucleons on the nucleus of the mirror ³He and ³H nuclei, in a Q² range of 0.5-3GeV²/c² in Hall A at Jefferson Lab. The unique sealed gas targets contained 53.37 mg/cm² and 85.1 mg/cm² of ³He and ³H, respectively. The beam energies were 2.2 GeV and 4.3 GeV, with a maximum current of 22 μ A. This talk presents the details of the physics analysis and the preliminary results of the ³He(e,e') and ³H(e,e') data and how it can be used to learn about the magnetic form factor of the neutron.

 $^1\mathrm{On}$ behalf of the E12-11-112 Collaboration

Sandra Santiesteban Univ of New Hampshire

Date submitted: 01 Jul 2020

Electronic form version 1.4