Abstract Submitted for the DNP20 Meeting of The American Physical Society

Gluon Generalized Parton Distributions and the Angular Momentum Sum Rule¹ EMMA YEATS, SIMONETTA LIUTI, BRANDON KRI-ESTEN, PHILIP VELIE, FERNANDA YEPEZ-LOPEZ, Univ of Virginia, SIWIF TEAM² — Understanding how the proton spin is carried by its constituents, the quarks and gluons, represents one of the main challenges in particle physics. In particular, the generalized parton distributions, $H_{q,g}$, $E_{q,g}$, which are found in the matrix elements for the deeply virtual Compton scattering process, allow us to measure the total angular momentum carried by the quarks and gluons, J_q and J_g , respectively. The latter are obtained as the second moment of the generalized parton distributions in the x variable. The nucleon helicity-flip distributions E_q and E_g , are lesser known than their counterparts H_q and H_g , because their forward limit values cannot be obtained from inclusive processes. Here we present a model calculation of E_g in the reggeized diquark model, using recent lattice QCD calculations to take into account its normalization. Based on our model calculation, we study the impact of E_q on the proton angular momentum sum rule.

¹This work was funded by DOE grant DE-SC0016286 and the SURA Center for Nuclear Femtography (CNF) grant.

²Summer Institute for Wigner Imaging and Femtography

Emma Yeats Univ of Virginia

Date submitted: 31 Jul 2020

Electronic form version 1.4