Gas Filled Halfraums on the First NIF Quad – Radiation Hydrodynamics, Filamentation, and Spatial Diagnostics

S.R. GOLDMAN, J.C. FERNANDEZ, N.M. HOFFMAN, J.L. KLINE, H.A. ROSE, E.S. DODD, J.P. GRONDALSKI, G.D. POLLAK, W.J. POWERS, M.J. SCHMITT, Los Alamos National Laboratory, D.G. BRAUN, D.E. HINKEL, L.J. SUTER, Lawrence Livermore National Laboratory — The Los Alamos gas-filled halfraum series on the first quad of NIF consisted of 4 laser shots at energies close to 15 kJ with nominal cylindrical symmetry. Lasnex modeling of halfraums with CO$_2$ as well as propane (C$_3$H$_8$) gas fill is consistent with peak power Dante experimental detector results. At the peak laser intensities of the shot (> 2 x 10^{15} W/cm2), filamentation is theoretically predicted, and more detailed simulations have suggested the possibility of conversion of the original f/8 laser beam profile into a beam with f-number as low as f/2. Simulations with laser beam profiles of f/8, f/4, f/3, and f/2 are available for both gas fills. Gated X-ray images of emission at energies above 10 keV probe the laser interaction with gold ablated from the rear wall of the halfraum. For CO$_2$, the axial variation in emission lies between the calculated results for the f/4 and f/8 simulations. For propane, the f/4 simulation provides the best fit to the data. Comparison at lower laser intensities, where the laser beam is expected to be f/8, clarifies the qualitatively different axial structuring observed for the two gases.

This work was sponsored by the NNSA of DOE.

S. R. Goldman
Los Alamos National Laboratory

Date submitted: 13 Jul 2005