SOL Thermal Instability due to Radial Blob Convection1 D.A. D’IPPOLITO, J.R. MYRA, D.R. RUSSELL, Lodestar Research Corporation — C-Mod data2 suggests a density limit when rapid perpendicular convection dominates SOL heat transport. This is supported by a recent analysis3 of BOUT code turbulence simulations, which shows that rapid outwards convection of plasma by turbulent blobs is enhanced when the X-point collisionality is large, resulting in a synergistic effect between blob convection and X-point cooling. This work motivates the present analysis of SOL thermal equilibrium and instability including an RX-regime model4 of blob particle and heat transport. Two-point (midplane, X-point) SOL thermal equilibrium and stability models are considered including both two-field (T) and four-field (n,T) treatments. The conditions under which loss of thermal equilibrium or thermal instabilities occur are established, and relations to the C-Mod data are described.

1Work supported by US DOE grant DE-FG03-97ER54392.