Abstract Submitted for the DPP05 Meeting of The American Physical Society

Transport reduction in the edge of the RFX reversed-field pinch G. SPIZZO¹, F. AURIEMMA¹, A. CANTON¹, S. CAPPELLO¹, A. CRAVOTTA¹, D.F. ESCANDE², R. LORENZINI¹, L. MARRELLI¹, P. MARTIN¹, R.B. WHITE³, P. $ZANCA^1$ — Magnetic field lines and particle orbits are calculated with the code ORBIT for a typical multiple helicity (MH) chaotic field, provided by a MHD numerical simulation of the reversed-field pinch (RFP). The result (confirmed by an analytical Hamiltonian calculation) is that m = 0 and m = 1 modes allow for the formation of magnetic islands which induce transport barriers at $r/a \simeq 0.7 \div 0.8$. This model has been cross-checked with experimental data coming from the Padua experiment RFX. A particle transport analysis has been done, by means of the 1D transport code TED, to investigate the dependence of the particle diffusion coefficient D on mode amplitude. TED runs show that there is a decrease of D at $r/a \simeq 0.7$. ORBIT runs are consistent with TED results. Finally, we present preliminary data showing the active control of m = 0 modes in the recently rebuilt RFX-mod, aiming at reproducing (with a suitable choice of externally applied m = 0 amplitudes and phases) an ideal no-resonance, no-island condition, which corresponds, in the Hamiltonian formulation, to the presence of good flux surfaces at the q = 0 radius.

¹Consorzio RFX, Euratom-ENEA Association, Padova, Italy ²UMR 6633-Université de Provence, Marseille, France ³Princeton Plasma Physics Laboratory

Paolo Franz

Date submitted: 21 Jul 2005

Electronic form version 1.4