Abstract for an Invited Paper
for the DPP05 Meeting of
The American Physical Society

Late-time Radiography of Beryllium Ablators in Long-pulse Gas-filled Hohlraums

JIM COBBLE, Los Alamos National Laboratory

We have obtained the first-ever late-time (>10 ns) radiographs of perturbation growth in a doped beryllium ablator, which is one candidate for the inertial-confinement-fusion capsule ablator at the National Ignition Facility (NIF). To do so, we have designed, deployed, and characterized a 6-ns radiation drive for an Omega hohlraum, filled with methane to inhibit the inward flow of high-Z wall material. The laser drive consists of two separate laser pulse shapes melded together into a uniquely shaped composite. Total input energy is ∼4.25 kJ. The radiation drive temperature, characterized by soft x-ray spectroscopy (Dante) and laser Doppler velocimetry, increases to 50 eV in 0.5 ns then gently ramps up to a peak value exceeding 140 eV at 5.6 ns. Side-on x-radiography of the Be sample ejected from the hohlraum provides an additional verification of the drive. Backscatter losses from laser-plasma instabilities into the lens from this surrogate NIF hohlraum are <5%. We find that methane has the desired effect of holding the Au wall back for >10 ns in these experiments. Active and passive shock-break-out diagnostics show that 40-µm thick Be-Cu (0.9% Cu by atom) samples are preheated even with this soft drive with ∼1% M-band contribution. Be samples at the rear of the hohlraum have taken the form of both sputtered and powder-pressed planar disks, sinusoids with 100-µm period and 2.5-µm amplitude, and steps (30 and 60 µm thick). This longer-than-average Omega radiation drive approximates conditions expected for the NIF capsule’s first shock, where the effects of ablator microstructure are expected to be most significant.

1This work is performed under the auspices of the United States Department of Energy, contract no. W-7405-ENG-36.