Abstract Submitted
for the DPP05 Meeting of
The American Physical Society

Possibility of an Alfvenic Wave Resonator in the Magnetosphere

MANISH MITHAIWALA, NRC-NRL Postdoc, GURUDAS GANGULI, Naval Research Lab., LEONID RUDAKOV, Icarus Research Inc. — There has been recent activity in understanding the origin of high energy (>1 MeV) “killer electrons” in the Earth’s magnetosphere. Previous work has identified the energization mechanism to be quasilinear diffusion involving whistler and ion-cyclotron waves, which are generated by temperature anisotropy. It is known that whistler waves, through reflection at the lower-hybrid resonance, can form a resonator. We find that in a multi-ion species environment, such as the Earth’s magnetosphere, the bi-ion rotation (cut-off) frequency and Buchsbaum (resonance) frequency are important for the propagation and evolution of Alfvenic waves near the ion-cyclotron frequency. Here we show that Alfvenic waves with \(k_\perp >> k_z \) can be captured by a magnetic cavity to form a strongly localized Magnetospheric Resonator which can interact with the electrons over a long time period and can lead to both energization and loss of the electrons. The Alfvenic waves can be generated by a ring distribution of one of the ion species. Ring ion distributions are known to form when the solar wind interacts with the magnetosphere or a comet interacts with the solar wind, and by the release of chemicals in the magnetosphere.

1Work supported by ONR.