Abstract Submitted for the DPP05 Meeting of The American Physical Society

Error field, torque, and plasma rotation¹ L.J. ZHENG, M. KOTSCHENREUTHER, J.W. VAN DAM, F. WAELBROECK, Institute for Fusion Studies, University of Texas - Austin — By calculating the torque on the error field coil structure, which is opposite to the torque exerting on the plasma, we find that the error-field-induced torque (τ_{ϕ}) can be expressed explicitly as the imaginary part of $\mathbf{j}^{\dagger} \mathcal{F}_{1}^{-1} (\delta W_{b} / \delta W_{\infty}) \mathcal{F}_{2} \mathbf{j}$, where \mathbf{j} specifies the strength of the error field, δW_{b} and δW_{∞} represent, respectively, the energy integrals with perfectly conducting wall and without wall, and \mathcal{F}_{1} and \mathcal{F}_{2} are regular equilibrium matrices. The kinetic version of the AEGIS code is being developed to calculate the torque in the numerically constructed equilibria. Experimental observations from DIII-D, JET, and C-Mod are examined and compared to our theoretical prediction based on the above torque expression. We will clarify the relationship between error field, torque, and plasma rotation.

 $^1 \rm Supported$ by the Office of Fusion Energy Science of the U.S. DOE under Grant DE-FG02-04ER54742

L. J. Zheng Institute for Fusion Studies, University of Texas - Austin

Date submitted: 22 Jul 2005

Electronic form version 1.4