Error field, torque, and plasma rotation1 L.J. ZHENG, M. KOTSCHENREUTHER, J.W. VAN DAM, F. WAELEBROECK, Institute for Fusion Studies, University of Texas - Austin — By calculating the torque on the error field coil structure, which is opposite to the torque exerting on the plasma, we find that the error-field-induced torque (τ_ϕ) can be expressed explicitly as the imaginary part of $j^\dagger F_1^{-1}(\delta W_b/\delta W_\infty) F_2 j$, where j specifies the strength of the error field, δW_b and δW_∞ represent, respectively, the energy integrals with perfectly conducting wall and without wall, and F_1 and F_2 are regular equilibrium matrices. The kinetic version of the AEGIS code is being developed to calculate the torque in the numerically constructed equilibria. Experimental observations from DIII-D, JET, and C-Mod are examined and compared to our theoretical prediction based on the above torque expression. We will clarify the relationship between error field, torque, and plasma rotation.

1Supported by the Office of Fusion Energy Science of the U.S. DOE under Grant DE-FG02-04ER54742

L. J. Zheng
Institute for Fusion Studies, University of Texas - Austin

Date submitted: 22 Jul 2005