Ion temperature in the ASTRAL helicon plasma source ROBERT BOIVIN, DAVID BRANSCOMB, Physics Department, Auburn University, 206 Allison Laboratory, Auburn, AL 3649-5311 — Ion temperature is measured in the ASTRAL (Auburn Steady sTate Research fAcility) helicon plasma source by means of a diode laser based Laser Induced Fluorescence (LIF) diagnostic. ASTRAL produces plasmas with the following parameters: \( n_e = 10^{10} \) to \( 10^{13} \) cm\(^{-3}\), \( T_e = 2 \) to 15 eV and \( T_i = 0.03 \) to 0.5 eV. A series of 7 large coils produce an axial magnetic field up to 1.3 kGauss. A fractional helix antenna is used to introduce rf power up to 2 kWatt. The 1.5 MHz bandwidth diode laser has a Littrow external cavity with a mode-hop free tuning range up to 15 GHz and with a total power output of about 15 mW. The wavelength is measured by a wavemeter and frequent monitoring prevents wavelength drift. For Ar plasma, the laser tuned at 668.61 nm, is used to pump the 3d\(^4\)F\(_{7/2}\) Ar II metastable level to the 4p\(^4\)D\(_{5/2}\) level. The fluorescence radiation between the 4p\(^4\)D\(_{5/2}\) and the 4s\(^4\)P\(_{3/2}\) levels (442.6 nm) is monitored by a PMT. Other diagnostics are presently installed on the plasma device. They included a RF compensated Langmuir probe which is used to measure both electron temperature and plasma density. A spectrometer which features a 0.33 m Criss-Cross Scanning monochromator and a CCD camera is used for spectroscopy studies of the plasma.

Robert Boivin
Physics Department, Auburn University, 206 Allison Laboratory
Auburn, AL 3649-5311

Date submitted: 22 Jul 2005

Electronic form version 1.4