Accuracy issues in spectroscopic modeling of K$_\alpha$ emission from M-shell ions in dense plasmas

STEPHANIE HANSEN, HYUN CHUNG, MAU CHEN, Lawrence Livermore National Laboratory — Although K$_\alpha$ emission originates from simple 1s – 2p transitions, the many-electron ions of mid-Z materials in warm, dense matter conditions introduce significant computational complexity to K$_\alpha$ spectroscopic modeling. First, complete models of M-shell ions in dense plasmas are inherently complex since they must include a large number of states with open 3p and 3d shells. Next, single-temperature models for collisional-radiative kinetics are inadequate since the thermal electrons that control the distribution of charge states in the M shell have insufficient energy to participate in inner-shell processes. Finally, near-solid densities introduce physical effects such as pressure ionization, the formation of quasi-bound states, and line broadening, which are not intrinsically included in the isolated-ion structure calculations used in most spectroscopic models. These issues are explored for K$_\alpha$ emission from M-shell Cu using several independent models.

Stephanie Hansen
Lawrence Livermore National Laboratory

Date submitted: 22 Jul 2005

Electronic form version 1.4