Al Backlighter Characterization at the Omega Laser

JIM COBBLE, TOM TIERNEY, JOE ABDALLAH, Los Alamos National Laboratory — We have characterized He- and H-like Al emission for various laser illuminations at the Omega laser with the goal of optimizing the ability to backlight low-atomic-number (low-Z) materials such as beryllium for fusion ignition studies. The conversion efficiency to Lyman α at 1.73 keV has been determined for 1, 2, 4, and 7 laser beams, i.e., as a function of laser energy/power. Data is recorded by a time-integrating spectrometer and a streaked x-ray spectrograph and reveals that the line/continuum ratio improves when the laser turns off. The Al plasma is diagnosed by line ratios and line profiles to determine the temperature and density. Results are compared to 1-D hydrodynamic calculations and to detailed theoretical atomic physics models. Evidence points to the increasing plasma opacity as the laser flux is increased.

1This work is performed under the auspices of the United States Department of Energy, contract no. W-7405-ENG-36.