Abstract Submitted
for the DPP05 Meeting of The American Physical Society

Particle Dynamics in Asymmetry-Induced Transport: a Computational Study D.L. EGGLESTON, Occidental College - We have developed a simple computer code as an aid to resolving the discrepanies between our experiments ${ }^{1}$ and the theory ${ }^{2}$ of asymmetry-induced transport. The code employs the fourth- order Runge-Kutta method to advance the particles in prescribed fields matching our experiment. For a single helical asymmety $\phi(r) \cos (k z+l \theta-\omega t)$, significant motion in the radial direction is restricted to those particles near the resonant velocity. Both the location and the width of this resonance are consistent with expectations. When a standing wave asymmetry is used (i.e., two counterpropagating helical waves), additional dynamical behaviors are observed. Stocastic motion occurs when the resonant regions of the two waves overlap, allowing a larger population of particles to undergo large radial excursions. There is also a class of particles with restricted axial motion, as in trapped particle modes ${ }^{3}$. These particles, which also make large radial excursions, are located near the radius where $\dot{\theta}=\omega / l$. Further progress in understanding asymmetry-induced transport may require inclusion of these effects.
${ }^{1}$ D.L. Eggleston and B. Carrillo, Phys. Plasmas 10, 1308 (2003).
${ }^{2}$ D.L. Eggleston and T.M. O'Neil, Phys. Plasmas 6, 2699 (1999).
${ }^{3}$ A.A. Kabantsev et al., Phys. Rev. Lett. 89, 245001 (2002).

Dennis Eggleston
Occidental College

