Temperature equilibration in disparate temperature plasmas

MICHAEL BARNES, W. DORLAND, Dept. of Physics, University of Maryland

The temperature equilibration time for disparate temperature laboratory and astrophysical plasmas is frequently determined by well-understood collisional processes. In turbulent, weakly collisional plasmas, however, there can be significant anomalous energy exchange among species. Such processes might be important, for example, in two-temperature accretion flows conjectured to exist around some supermassive black holes and also in magnetic confinement fusion devices. We explore the possibility of the existence of a turbulent mechanism for temperature equilibration by considering a disparate temperature pair plasma in slab geometry with spatial inhomogeneity. We employ the linear gyrokinetic equation to derive an instability allowed by the ion-electron temperature difference and carry out full nonlinear simulations with the gyrokinetic code GS2 to determine the effect of this instability on the ion-electron temperature ratio. Extensions to conventional (disparate mass) plasmas will be discussed.