Abstract Submitted for the DPP05 Meeting of The American Physical Society

Toward High I_N Operation in the Pegasus Toroidal Experiment¹ E.A. UNTERBERG, University of Wisconsin-Madison, PEGASUS TEAM — The present experimental goal of the Pegasus experiment is to delineate the external kink boundary, which determines the low-q, high- I_N operational space for an ultralow-A ST. Equilibrium and stability modeling projects stable equilibria approaching I_p/I_{TF} ~ 3 (I_N ~ 20). Upgrades to the facility added improved position and shape control, increased and time-variable toroidal field, and programmable loop voltage. These upgrades allow for greater flexibility in $q(\mathbf{r},t)$ tailoring and should provide access to $I_p/I_{TF} > 1$ and the external kink boundary. The Phase I operating space has been recovered, with discharges characterized by $I_{p,max}$ \sim 150 kA, $\langle n_e \rangle \leq 0.6 n_{GW}$, and large 2/1 tearing modes. Experiments to date have focused on resistive MHD mode suppression by using the expanded capabilities to tailor plasma startup. Tearing mode mitigation has been demonstrated with plasma-current ramp-rate control (from 5-30 MA/s) and improved gas handling with $\langle n_e \rangle \geq 0.6 n_{GW}$. Electrostatic plasma guns have been installed to increase the effective V-s and to provide plasma startup without a central solenoid.

¹Work supported by U.S. D.O.E. Grant DE-FG02-96ER54375.

Gregory Garstka University of Wisconsin-Madison

Date submitted: 22 Jul 2005

Electronic form version 1.4