Magnetic Priming of a Relativistic Magnetron

B.W. HOFF, R.M. GILGENBACH, W.M. WHITE, N. JORDAN, R. EDGAR, Y.Y. LAU, V.B. NECULAE, M.C. JONES, P. PENGVANICH, University of Michigan, Ann Arbor, T.A. SPENCER, AFRL, Kirtland, NM, D. PRICE, Titan Corp., CA — Magnetic priming utilizes \(N/2\) azimuthal variations in the axial magnetic field of an \(N\)-cavity magnetron to prebunch \(N/2\) spokes for \(\pi\)-mode. [1] Positive results have been obtained in magnetic priming of the UM/Titan, relativistic magnetron (-300kV, 2-10kA, 0.3-0.5 \(\mu\)s). Priming fields were created by three, axial, mu-metal wires within the cathode. Modeled magnetic field data were imported into 3-D MAGIC PIC and run for the A6 relativistic magnetron. Simulations showed faster startup and enhanced \(\pi\)-mode control compared to the unprimed baseline. Initial experiments were performed in the UM/Titan magnetron with 3, 4 cm-long mu-metal wires embedded in the cathode, centered beneath the emission region. This primed magnetron yielded increased \(\pi\)-mode shots (57% primed vs. 35% unprimed) and statistically significant decreases in startup time (114 ns primed vs. 156 ns unprimed) and time to peak power (241 ns primed vs. 277 ns unprimed); mean peak power increased (11 MW primed vs. 6.5 MW unprimed, measured from 1 of 3 outputs). Additional concepts include longer cathode wires and wires in the anode. [1] V.B. Neculaes, R.M. Gilgenbach and Y.Y. Lau, US Patents 6,872,929 and 6,921,890

\(^{1}\text{Research supported by AFOSR and AFRL}\)