Abstract Submitted for the DPP05 Meeting of The American Physical Society

Development of Fast Diagnostics for High intensity Ion beams S. EYLON, S.S. YU, P.K. ROY, E. HENESTROZA, W.G. GREENWAY, F.M. BI-ENIOSEK, Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Road, Berkeley, CA-94720, USA, A.B. SAFKOW, E.P. GILSON, R.D. DAVIDSON, Princeton Plasma Physics Laboratory (PPPL), LBNL COLLABORATION, PPPL COLLABORATION — Ion beam neutralization and drift compression experiments are designed to study the compression of ion beams for high energy density physics (HEDP) and fusion energy research. In this experiment a 300-keV, 30mA K⁺ ion beam was compressed to <5 nsec duration by a velocity tilt core in a one meter-long plasma column. We are developing several fast diagnostics, such as Faraday cups, wire current monitor (measured response in the range of 0.5 nsec) fast photo multiplier system combined with a fast aluminum-oxide scintillator and optical emission from a gas cloud to measure time-resolved beam distribution of short pulses. Simulation and experimental data will be presented. (This work was supported by U.S. Department of Energy under Contract No. DE-AC02-05CH11231)

Shmuel Eylon Lawrence Berkeley National Laboratory 1 Cyclotron Road, Berkeley, CA 94720, USA

Date submitted: 02 Aug 2005

Electronic form version 1.4