Development of Fast Diagnostics for High intensity Ion beams

S. EYLON, S.S. YU, P.K. ROY, E. HENESTROZA, W.G. GREENWAY, F.M. Bienenosek, Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Road, Berkeley, CA-94720, USA, A.B. SAFKOW, E.P. GILSON, R.D. DAVIDSON, Princeton Plasma Physics Laboratory (PPPL), LBNL COLLABORATION, PPPL COLLABORATION — Ion beam neutralization and drift compression experiments are designed to study the compression of ion beams for high energy density physics (HEDP) and fusion energy research. In this experiment a 300-keV, 30mA K+ ion beam was compressed to <5 nsec duration by a velocity tilt core in a one meter-long plasma column. We are developing several fast diagnostics, such as Faraday cups, wire current monitor (measured response in the range of 0.5 nsec) fast photo multiplier system combined with a fast aluminum-oxide scintillator and optical emission from a gas cloud to measure time-resolved beam distribution of short pulses. Simulation and experimental data will be presented. (This work was supported by U.S. Department of Energy under Contract No. DE-AC02-05CH11231)

Shmuel Eylon
Lawrence Berkeley National Laboratory
1 Cyclotron Road, Berkeley, CA 94720, USA

Date submitted: 02 Aug 2005