Abstract Submitted
for the DPP06 Meeting of
The American Physical Society

Experimental measurements of the $m = 1$ unstable diocotron mode1 T.B. MITCHELL, B.T. CHANG, W. SHI, Dept. of Physics and Astronomy, U. Delaware, Newark DE — The first experimental observation of an exponentially growing $m = 1$ unstable diocotron mode on a trapped, magnetized, partially hollow electron column was in 19902, and subsequent measurements examined the effect of end shape curvature3. We present new experimental measurements of the μ (initial column hollowness parameter) and κ (end shape curvature parameter) dependences of growth rates of the $m = 1$ instability. Measurements of the perturbed longitudinal temperatures of the electron column have been incorporated into the present experiments. We have experimentally established a $\mu^{4/3}$ scaling of the growth rates on the column hollowness μ for $\mu < 2.2$. Our results of growth-rate scaling on κ/μ for relatively large μ and κ are in agreement with theoretical predictions for the instability near onset $(\kappa, \mu) \to 0$ by Finn et al.4.

1Supported by the National Science Foundation and the U.S. Department of Energy.
3A. A. Kabantsev and C. F. Driscoll, Non-Neutral Plasmas III, 208 (1999).

Travis Mitchell
Dept. of Physics and Astronomy, U. Delaware, Newark DE

Date submitted: 21 Jun 2006

Electronic form version 1.4