Abstract Submitted for the DPP06 Meeting of The American Physical Society

Experimental measurements of the m=1 unstable diocotron \mathbf{mode}^1 T.B. MITCHELL, B.T. CHANG, W. SHI, Dept. of Physics and Astronomy, U. Delaware, Newark DE — The first experimental observation of an exponentially growing m=1 unstable diocotron mode on a trapped, magnetized, partially hollow electron column was in 1990^2 , and subsequent measurements examined the effect of end shape curvature³. We present new experimental measurements of the μ (initial column hollowness parameter) and κ (end shape curvature parameter) dependences of growth rates of the m=1 instability. Measurements of the perturbed longitudinal temperatures of the electron column have been incorporated into the present experiments. We have experimentally established a $\mu^{4/3}$ scaling of the growth rates on the column hollowness μ for $\mu < 2.2$. Our results of growth-rate scaling on κ/μ for relatively large μ and κ are in agreement with theoretical predictions for the instability near onset $(\kappa, \mu) \to 0$ by Finn et al.⁴.

Travis Mitchell Dept. of Physics and Astronomy, U. Delaware, Newark DE

Date submitted: 21 Jun 2006 Electronic form version 1.4

¹Supported by the National Science Foundation and the U.S. Department of Energy. ²C. F. Driscoll, *Phys. Rev. Lett.* **64**, 645 (1990).

³A. A. Kabantsev and C. F. Driscoll, Non-Neutral Plasmas III, 208 (1999).

⁴J. M. Finn, D. del-Castillo-Negrete and D. C. Barnes, *Phys. Plasmas* **6**, 3744 (1999).