An iterative semi-implicit scheme for KAW-mediated magnetic
reconnection1 NUNO LOUREIRO, CMPD – UMD / PPPL, GREG HAMMETT,
PPPL — Recent results in the field of magnetic reconnection have come to emphasize
the importance of going beyond the single fluid MHD description. In particular, the
Hall term and/or finite Larmor radius (FLR) effects have been shown to be crucial
in obtaining the long sought speed-ups of the reconnection rate. From the numerical
point of view, these effects originate new difficulties as they introduce dispersive
waves into the system [whistler, kinetic Alfven wave (KAW)] which have dispersion
relations where the frequency $\omega \sim k^2$, i.e., extremely fast when compared to the
macroscopic dynamics of the system. Explicit integration schemes show great difficulty in coping with these waves, yielding timesteps which are impractically small.
In this work we discuss how semi-implicit methods can be adapted to deal with the
KAW. The main idea resides in deriving a wave-like operator which mimics the real
wave operator in the linear and nonlinear regimes, while being analytically invertible. Timestep enhancements by factors of ~ 100 are obtained, with computational
time per timestep roughly the same as with an explicit scheme. An error control
method is derived and used to determine the timestep. This approach is thus both
unconditionally stable and accurate. Comparisons with a purely explicit integration
are found to be in excellent agreement.

1Work supported by The Center for Multiscale Plasma Dynamics, the U.S. Department of Energy Grant No. DE-FC02-04ER54784

Nuno Loureiro

CMPD – UMD / PPPL

Date submitted: 19 Jul 2006

Electronic form version 1.4