Studies of Gyrokinetic Turbulence Models for Edge Plasmas1 E.A. BELLI, J. CANDY, P.B. SNYDER, General Atomics — Gyrokinetic computational models are developed for studying tokamak edge plasmas. A 5D δf Eulerian gyrokinetic code which uses (\vec{R}, μ, v_\parallel) coordinates has been developed and benchmarked with the GS2 gyrokinetic code in the linear, collisionless, electrostatic limit, including trapped electron dynamics. Various collisional and numerical dissipation algorithms for the (μ, v_\parallel) velocity space formulation with nonlinear dynamics are explored. Extensions of the δf gyrokinetic formulation to full $F(F = F_0 + \delta f)$ are also presented. We discuss studies of turbulence and transport in the tokamak edge/scrape-off region, where $\delta f \sim F_0$ so $O(\rho^2)$ effects neglected for core plasma simulations, such as the parallel nonlinearity, may now be important.

1Work supported by U.S. DOE under DE-FG03-95ER54309.