Dense Hypervelocity Plasma Jets1 F. DOUGLAS WITHERSPOON, ANDREW CASE, MICHAEL W. PHILLIPS, HyperV Technologies Corp. — High velocity dense plasma jets are under continued experimental development for a variety of fusion applications including refueling, disruption mitigation, rotation drive, and magnetized target fusion. The technical goal is to accelerate plasma slugs of density \(> 10^{17}\text{cm}^{-3}\) and total mass \(> 100\text{micrograms}\) to velocities \(> 200\text{km/s}\). The approach utilizes symmetrical injection of very high density plasma into a coaxial EM accelerator having a tailored cross-section geometry to prevent formation of the blow-by instability. Injected plasma is generated by electrothermal capillary discharges using either cylindrical capillaries or a newer toroidal spark gap arrangement that has worked at pressures as low as \(3.5 \times 10^{-6}\text{Torr}\) in bench tests. Experimental plasma data will be presented for a complete 32 injector accelerator system recently built for driving rotation in the Maryland MCX experiment which utilizes the cylindrical capillaries, and also for a 50 spark gap test unit currently under construction.

1Research funded by the DOE Office of Fusion Energy Science.