Physical properties of Plasma Jets Emitted in Pulsed Capillary Discharges.1 GONZALO AVARIA, HEMAN BHUYAN, MARIO FAVRE, EDMUND WYNDHAM, Pontificia Universidad Catolica de Chile, Departamento de Fisica, Casilla 306, Santiago 22, Chile — Open ends pulsed capillary discharges (PCD) establish natural conditions for the generation of plasma jets. We have investigated the physical properties of the plasma jet emitted in a PCD, operating in a continuous pulsing mode at 10 kV (\(~\sim\)2 kA, 10 ns), with frequencies up to 50 Hz. The discharge is operated in argon and nitrogen, at pressures in the 0.4—1.0 Torr range. A dual, optoisolated, fast Langmuir probe, placed at the anode side, close to the capillary exit, is used to measure the characteristic electron temperature (T_e) and electron density (N_e) of the plasma jets, with temporal and spatial resolution. Time integrated visible spectroscopy is used to identify the plasma jets components. Characteristic values of T_e and N_e are found to be in the tens of eV and 10^{13} cm$^{-3}$, respectively. Based on these measurements, a comprehensive characterization of the PCD plasma jets will be presented.

1Funded by FONDECYT grant #1030970.