Abstract Submitted for the DPP06 Meeting of The American Physical Society

Steady-State, High-Performance Operation of DIII-D¹ P.A. POLITZER, General Atomics, FOR THE DIII-D AT THRUST TEAM — The DIII-D AT program objective is to develop and demonstrate a steady-state scenario with performance that extrapolates to Q>5 in ITER. This year, we examine two aspects of AT optimization. Using the newly improved pumping, we have established a double-null, high triangularity AT reference plasma. Further optimizing this shape by varying squareness (ζ) has shown that confinement appears to improve with reduced ζ and that there is an optimum ζ for MHD stability. Changes in pedestal and ELM conditions with varying ζ are being analyzed. We are also undertaking experiments to optimize the q profile for AT operation. As the tools needed for maintaining a stationary high performance q profile are not yet available, we concentrate on optimization under slowly varying transient conditions, using varying combinations of co- and counter-injection as well as B_T ramping to modify the current profile. The variables are q_{min} (>2), q_0 - q_{min} (range 0-1), and $\rho_{q_{min}}$ (>0.5). Issues being addressed are the nature of the limiting instabilities (n = 2 and 1)3 are predicted to dominate), the dependences of the β limit and of f_{NI} on q_{min} and rotation.

¹Supported by the US DOE under DE-FC02-04ER54698.

P.A. Politzer General Atomics

Date submitted: 21 Jul 2006

Electronic form version 1.4