Laser Induced Fluorescence Diagnostic for the ASTRAL Plasma Source. ROBERT BOIVIN, OLA KAMAR, JORGE MUNOZ, Department of Physics, Auburn University, 206 Allison Laboratory, Auburn, Alabama 36949-5311 — A Laser Induced Fluorescence (LIF) diagnostic is presented in this poster. The ion temperature measurements are made in the ASTRAL (Auburn Steady State Research Facility) helicon plasma source using a diode laser based LIF diagnostic. ASTRAL produces Ar plasmas with the following parameters: \(n_e = 10^{10} \) to \(10^{13} \) cm\(^{-3}\), \(T_e = 2 \) to 10 eV and \(T_i = 0.03 \) to 0.5 eV. A series of 7 large coils produce an axial magnetic field up to 1.3 kGauss. Operating pressure varies from 0.1 to 100 mTorr and any gas can be used for the discharge. A fractional helix antenna is used to introduce rf power up to 2 kWatt. A number of diagnostics are presently installed on the plasma device (Langmuir Probe, Spectrometer, LIF system). The LIF diagnostic makes use of a diode laser with the following characteristics: 1.5 MHz bandwidth, Littrow external cavity, mode-hop free tuning range up to 16 GHz, total power output of about 15 mW. The wavelength is measured by a precision wavemeter and frequent monitoring prevents wavelength drift. For Ar plasma, a new LIF scheme has been developed. The laser tuned at 686.354 nm, is used to pump the \(3d^{4}F_{5/2} \) Ar II metastable level to the \(4p^{4}D_{5/2} \) state. The fluorescence radiation between the \(4p^{4}D_{5/2} \) and the \(4s^{4}P_{3/2} \) terms (442.6 nm) is monitored by a PMT.