ECEI/MIR on KSTAR: Conceptual Design1 Z. SHEN, Z.G. XIA, C.W. DOMIER, N.C. LUHMANN, JR., University of California at Davis, H. PARK, Princeton Plasma Physics Laboratory — A plasma imaging diagnostic is being developed for the KSTAR tokamak to image electron temperature T_e profiles and fluctuations via Electron Cyclotron Emission Imaging (ECEI) and electron density n_e fluctuations via Microwave Imaging Reflectometry (MIR). The envisioned ECEI system consists of a pair of 32 element mixer arrays which span a frequency range of 172-216 GHz, yielding a 32×48 or 1536 channel T_e image. The MIR system consists of a pair of 20 element mixer arrays with a frequency range of 104-152 GHz, yielding a 20×16 or 320 channel n_e fluctuation image. Use of in-vessel reflective optics permits both systems to view the KSTAR plasma through a relatively small vacuum window. System details, including preliminary optical and electronics designs, will be presented.

1Work supported by U.S. DoE Grant DE-FG02-99ER54531.