Study of RWM Stability and RWM Feedback Control in Reactor Relevant Low-Rotation Discharges in DIII-D\textsuperscript{1} H. REIMERDES, J. BIALEK, A.M. GAROFALO, M.J. LANCTOT, O. KATSURO-HOPKINS, G.A. NAVRATIL, Columbia U., R. BUDNY, M. OKABAYASHI, W.M. SOLOMON, PPPL, M.S. CHU, G.L. JACKSON, R.J. LA HAYE, E.J. STRAIT, GA, Y. IN, J.S. KIM, FARTECH, Inc. — Advanced tokamak operation in ITER is expected to require active control of the resistive wall mode (RWM) \cite{1}. After the re-orientation of 1 of 4 neutral beam injectors DIII-D is now ideally suited to address the stability of non-rotating high-beta plasmas. In discharges with balanced NBI heating the RWM becomes unstable at the no-wall stability limit. Only a modest increase of the plasma rotation is sufficient to remain stable beyond this limit suggesting a lower rotation threshold than anticipated from previous experiments, which used non-axisymmetric magnetic fields to lower the plasma rotation. Feedback experiments using an upgraded audio-amplifier system to stabilize the RWM in low-rotation plasmas have begun and comparisons with feedback modeling will be shown.

\cite{1} Y. Liu, et al., Nucl. Fusion 45, 1131 (2005).

\textsuperscript{1}Supported by the US DOE under DE-FG02-89ER53297, DE-AC02-76CH03073, DE-FG03-95ER54309, DE-FC02-04ER54698, and DE-FG02-03ER83657.

Holger Reimerdes
Columbia U.

Date submitted: 21 Jul 2006