Measurement of ion temperature and flow velocity by using LIF and electric probe methods in K2H and DiPS propulsion simulators

GEUN-SIG CHOI, KYU-SUN CHUNG, HYUN-JONG WOO, YOUNG JUN SEO, MYOUNG-JAE LEE, Electric Probe Applications Laboratory (ePAL), Hanyang University, TAIHYEOP LHO, YONG HO JUNG, BONG JU LEE, National Fusion Research Center (NFRC) — Ion temperature, plasma flow velocity and plasma density are measured in DiPS (Diversified Plasma Simulator) and K2H (KBSI-KAIST-Hanyang University) propulsion simulators by a laser induced fluorescence (LIF) method and a fast scanning electric probe system, which consists of an rf-compensated single probe and a Mach probe. In both devices helicon plasmas were stably generated with m=+1 right-helical antenna at 13.56 MHz with powers of 1 - 3kW (DiPS) and 0.5 - 1kW (K2H), and open ended magnetic configurations are utilized. The measured plasma parameters are as follows: plasma densities of 10^{11} – 10^{13} cm^{-3} (K2H) and 10^{12} – 10^{13} cm^{-3} (DiPS), electron temperatures of 3 – 9 eV (K2H) and 2 – 4 eV (DiPS), ion temperatures of 0.14 – 0. 17 eV (K2H) and 0.05 – 0.2 eV (DiPS) and drift velocities of 0.8 – 1.6 km/s (K2H) and 0.2 – 0.5 km/s (DiPS).

1This work is supported partially by the User Program of National Fusion Research Center, partially by the National Research Laboratory (NRL) and Program of Korea Science and Engineering Foundation (KOSEF) under the Korea Ministry of Science and Technolog

Kyu-Sun Chung
Department of Electricity Engineering, Hanyang University

Date submitted: 21 Jul 2006

Electronic form version 1.4