Laser driven shock waves in a large magnetized plasma

CHRISTOPH NIEMANN, UCLA, MAYO VILLAGRAN MUNIZ, UNAM, CARMEN CONSTANTIN, NATHAN KUGLAND, PAT PRIBYL, UCLA, CRAIG HOGLE, Carleton, ZOLTAN LUCKY, MATT WEISBART, WALTER GEKELMAN, UCLA — We will present the first experiments on the interaction of an energetic, rapidly expanding laser-produced plasma with an ambient magnetized plasma that supports Alfven waves. The experiments are performed with a high-power laser coupled to the Large Plasma Device (LAPD). Focused laser intensities in excess of 10^{14} W/cm2 produce an ablating plasma-plume with expansion velocities of several 100 km/s. Prior to the laser pulse an ambient plasma with a size of 18 m lengths and 50 cm diameter at 4×10^{12} cm$^{-3}$ and $T_e=5$ eV is created in an axial magnetic field of 400 G. The interaction of the two plasmas will lead to the formation of shock waves with M_A and β above unity and a density sufficiently small to approach the collisionless regime. We will show measurements of the magnetohydrodynamic turbulence that the shock creates as well as its effect on the particle velocity distribution.

1Supported by the Department of Energy and the Basic Plasma Science Facility.