Chaos generated subdiffusion and related convection in toroidal confinement devices

R.B. WHITE, Plasma Physics Laboratory, P.O.Box 451, Princeton, NJ, 08543, S. CAPPELLO, Consorzio RFX, Euratom-ENEA Association, Corso Stati Uniti 4, 35127 Padova - Italy, L. MARRELLI, F. SATTIN, G. SPIZZO, Consorzio RFX, Euratom-ENEA Association — Transport in toroidal devices is usually described as the sum of diffusion and convection, \(\Gamma = -D\nabla n + v \cdot n \), and \(v \) is interpreted as the spatial variation \(\partial D/\partial r \) of \(D \). When the magnetic field is chaotic and it is near the stochastic threshold (as it is the case for the reversed-field pinch, RFP), the assumption that particles moving along chaotic field lines diffuse in the system is not valid. Instead, in such a condition, a convective velocity term appears quite naturally due to the streaming motion of particles with velocity nearly parallel to the magnetic field (i.e., with pitch \(\lambda = v_\parallel/v \) close to 1), while particles with small pitch diffuse collisionally through the magnetic field. The convective term is a consequence of the intrinsic, non-diffusive character of the transport. Diffusive motion is recovered when the configuration consists of closed nested flux surfaces, such as in the ideal single helicity (SH) condition \(^1\). The study is carried on calculating magnetic field lines and particle orbits with the code ORBIT for a typical multiple helicity (MH) chaotic field, provided by a 3D MHD numerical simulation (SpeCyl) of the RFP.