Overview of the Maryland Centrifugal Experiment (MCX)1

RICHARD ELLIS, RYAN CLARY, RAY ELTON, ADIL HASSAM, ROBERT LUNSFORD, CATALIN TEODORESCU, University of Maryland, ANDREW CASE, MICHAEL PHILLIPS, DOUGLAS WITHERSPOON, HyperV Technologies, UNIVERSITY OF MARYLAND COLLABORATION, HYPERV TECHNOLOGIES COLLABORATION — The mission of MCX is to study centrifugal confinement and velocity shear stabilization of interchange instabilities in a linear magnetic geometry. New results include measurements of the radial profiles of rotational velocity employing multi-chord high resolution spectroscopy of impurity ion spectral lines; these show velocity shear sufficient for stabilization. Measurements of the axial dependence of rotation velocity will also be presented. A higher voltage (20 kV) discharge capacitor bank has been implemented and a study of velocity limitations for a variety of discharge parameters and insulator configurations, including transitions between discharge modes, will be reported. A new multi-chord H\textsubscript{α} emission array of detectors is being developed to measure radial profiles of neutral hydrogen and correlate with momentum confinement times. A collaboration with HyperV Technologies is underway to study the injection of plasmoids into MCX employing a new innovative plasma gun, which is nearing completion.

1Supported by USDOE