Evaluation of the RF Quasilinear Operator Using the TORIC Spectral Solver

P.T. BONOLI, J.C. WRIGHT, MIT - PSFC, R.W. HARVEY, CompX, C.K. PHILLIPS, E. VALEO, PPPL, L.A. BERRY, E.F. JAEGGER, ORNL, M. BRAMBILLA, R. BILATO, IPP-Garching, RF SCIDAC TEAM — Recently the full-wave solver TORIC has been modified to employ the plasma response for an arbitrary particle distribution [1]. In order to couple this code to a Fokker Planck solver for self-consistent evolution of nonthermal particle distributions it is first necessary to evaluate the RF quasilinear operator (D_{ql}) using the electric fields expressed in the spectral basis representation of TORIC [2]. The present work employs a technique [3] where D_{ql} is written in terms of the local power dissipation, which has been reconstructed from the electric fields in the full-wave solver. This technique will also be compared with more simplified treatments of D_{ql} that have been carried out in the past using TORIC [4].


1Work supported by the US DoE under Contract No. DE-FC02-01ER54648.