Abstract Submitted for the DPP06 Meeting of The American Physical Society Plasma Manipulation Techniques for Positron Storage¹ T. R. WE-BER, J. R. DANIELSON, C. M. SURKO, University of California, San Diego — Described here are new plasma manipulation techniques central to the development of a multicell Penning trap^2 that is designed to increase positron storage by orders of magnitude (e.g., to particle numbers $N \geq 10^{12}$). The experiments are done using test electron plasmas. A technique is described to move plasmas across the confining magnetic field and dump them at specific radial and azimuthal locations. Techniques to fill and operate two in-line plasma cells simultaneously and use of 1 kV confinement potentials are demonstrated. These experiments establish the capabilities to create, confine, and manipulate plasmas with the parameters required for a multicell trap, namely $N \geq 10^{10}$ in a single cell with temperatures ≤ 0.2 eV, plasma lengths ~ 10 cm and radii ~ 0.2 cm. The updated design of a multicell positron trap for 10^{12} particles is described. Potential applications, including prospects for a portable positron source (i.e., to replace conventional isotope and accelerator-based sources) will be discussed. ¹This work is supported by DARPA and NSF. ²C. M. Surko and R. G. Greaves, Rad. Phys. Chem. 68, 419 (2003). James Danielson University of California, San Diego Date submitted: 21 Jul 2006 Electronic form version 1.4