Kelvin-Hemholtz/Drift Wave Coupling to Kinetic Shear Alfven Waves

JEAN C. PEREZ, University of Wisconsin-Madison, W. HORTON, University of Texas at Austin, IFS, S. BOLDYREV, University of Wisconsin-Madison, J.H. KIM, University of Texas at Austin, IFS, R.D. BENGTSON, University of Texas at Austin, FRC, T. CARTER, University of California, Los Angeles — Two-component fluid models are proposed to study the coupling of $\mathbf{E} \times \mathbf{B}$ shear flow driven turbulence with the Alfvén waves in the Large Plasma Device (LaPD). Shear Alfvén waves can be easily excited and measured in the LaPD as reported by Vincena et. al. Phys. Plasmas, 8(9), 3884, 2000. Here we present new $\delta \mathbf{B}$ measurement that show low frequency Alfvénic-like magnetic fluctuation driven by a strong localized shear flow layer created by a localized radial electric field. The electrostatic Kelvin-Helmholtz features have been extensively analyzed with computer simulations and the vorticity probe in Perez et. al. Phys. Plasmas, 13(055701), 2006, and Horton et. al. Phys. Plasmas, 12(022303), 2005. The simulations are extended to include the kinetic Alfvén wave (KAW) and intertial Alfvén wave physics. Comparisons between the electromagnetic \mathbf{E}_\perp and the simulations are presented in some detail.

Jean C. Perez
University of Wisconsin-Madison

Date submitted: 24 Jul 2006