High Beta Observations of the Hot Electron Interchange Instability1 E.E. ORTIZ, M.E. MAUEL, D.T. GARNIER, A.K. HANSEN, Columbia University, J. KESNER, A. BOXER, J.L. ELLSWORTH, I. KARIM, R. BERGMANN, MIT PSFC — High frequency ($f > 1$ MHz) electrostatic fluctuations have been observed in high-beta plasma created in the Levitated Dipole Experiment (LDX). We have previously identified these fluctuations as the Hot Electron Interchange (HEI) instability.2 New observations have been made in the presence of the magnetic levitation fields. We find the HEI mode is characterized by frequency sweeping at the drift-resonance of trapped energetic electrons. The fluctuations often appear with coherent structures that have been detected on fast high-impedance electrostatic probes and edge Mirnov sensors. We observe phase shifts using multiple probes that will enable us to determine the toroidal mode number (m) and a higher sampling rate reveals frequency sweeping as high as 40 MHz. Measurements that characterize these modes now incorporate fast magnetic measurements in an attempt to put together a coherent picture of plasma behavior during these modes, including the consequences of these instabilities on plasma formation and pressure limits.

1This work is supported by U.S. DOE Grants DE-FG02-98ER54458 and DE-FG02-98ER54459