Fast-Ion Profiles in MHD-Quiescent Plasmas

The fast-ion distribution is measured using the fast-ion D_α (FIDA) diagnostic [1,2], which has spatial resolution of ~ 5 cm, time resolution of ~ 1 ms, and energy resolution of ~ 10 keV. This paper focuses on the measurements under quiescent discharge conditions (i.e. in the absence of MHD activity and collective particle effects). A weighted Monte Carlo simulation code allows direct comparison of classical calculations of the fast-ion distribution function using either the TRANSP code or a Fokker-Planck code with the FIDA measurements. Pitch angle scattering and slowing down of fast ions are studied by varying the injection energy, beam angle, plasma density and electron temperature; the FIDA signals vary as classically expected in these MHD-quiescent plasmas. In addition, the fast-ion profiles are compared during co- and counter-injection of neutral beam. Neutral particle and neutron diagnostics corroborate the FIDA measurements.

1Work supported by U.S. DOE under SC-G903402 and DE-FC02-04ER54698.