Ion Velocity Distribution Functions in a Compact, Expanding, Helicon Plasma DANIEL LEWIS, ALEXANDER HANSEN, EARL SCIME, West Virginia University Department of Physics — Previous laser induced fluorescence (LIF) measurements of ion velocity distribution functions in a compact, expanding helicon plasma were limited by the available laser power and optical access [Keesee et al., Phys. Plasmas 12, 093502 (2005)]. Here we present LIF measurements of the ivdf in argon plasmas in the CHEWIE compact helicon source as a function of fill pressure, source magnetic field, and partial pressure of argon. The LIF measurements were accomplished with a ring dye laser tuned to 611.662 nm (vacuum wavelength) to pump the Ar II $3d^2$G$_{9/2}$ metastable state to the $4p^2$F$_{7/2}$ state and observing the fluorescent emission at 460.96 nm photons. RF power up to 600 W is used to create a steady state plasma in the 12 cm long, 6 cm diameter Pyrex source chamber. One end of the source chamber is connected to a 30 cm long, 15 cm diameter expansion chamber. The magnetic field strength ranges from 0 to 850 Gauss. We will present measurements of argon ivdfs for gas flow rates of 10, 20, 30 sccm at constant rf power and magnetic field.

Alexander Hansen
West Virginia University Department of Physics

Date submitted: 16 Jul 2007