NIF Conceptual Design Studies of Bang Time Diagnostics Using d-t Fusion Gamma Rays

JOSEPH MACK, CARLTON YOUNG, SCOTT EVANS, HANS HERRMANN, Los Alamos National Laboratory, ROBERT MALONE, National Securities Technologies, MICHAEL MORAN, VLADIMIR GLEBOV, University of Rochester, Laboratory for Laser Energetics — Bang time and reaction history measurements are essential components of diagnosing failure-modes for ICF implosions on the National Ignition Facility (NIF). Fusion gamma rays are the preferred observable, as they offer the most direct link to deuterium-tritium (d-t) burn. NIF requirements dictate time resolution and timing accuracy of <10 ps and <50 ps, respectively. Current approaches use Gas Cherenkov Detectors (GCDs) that convert d-t fusion gamma rays to optical Cherenkov photons, which are collected and recorded by an appropriately fast system. GCD systems, based on ultra-fast photomultiplier tubes and streak cameras, have been developed and fielded successfully at the Omega laser facility. A comparative study of streak-camera-based designs, using optical transport and light pipes, are presented. Trade-off analyses are provided based on achievable throughput and bandwidth. Related studies are also described that attempt to optimize the most advantageous aspects of the case studies.

1Sponsored by U. S. DoE/ LANS, LLC, Los Alamos National Laboratory, LA-UR-07-4522.