Multi-element Magnetic “B-dot” Probe1 SAMUEL HARROLD2, Univ Rochester, NUF, TOM INTRATOR, XUAN SUN, LANL — We describe a 24-element magnetic probe consisting of miniature commercial chip inductors that will be used to investigate the evolution of the magnetic field lines during a reconnection event. Eight clusters of three mutually orthogonal inductor coils mounted in a linear array provide dB/dt data in the x, y, and z directions with a spatial resolution of 0.5 cm. The probe will be part of the Reconnection Scaling Experiment (RSX) at Los Alamos National Laboratory, which creates multiple magnetic flux ropes of H$^+$ plasma. Using numerical integration, we expect to measure magnetic field strengths of 1-10 gauss. The plasma columns of RSX that undergo magnetic reconnection, merging, and bouncing evolve on a characteristic timescale of 1-10 μs, which is well within the probe’s expected time resolution.

1This work was supported by the National Undergraduate Fellowship (NUF) through PPPL.
2Undergraduate Poster Session

Samuel Harrold
Univ Rochester, NUF

Date submitted: 18 Jul 2007