A first-principles analytical theory for 2D magnetic reconnection in electron and Hall MHD. A. ZOCO, A.N. SIMAKOV, L. CHACON, LANL — While the relevance of two-fluid effects in fast magnetic reconnection is well-known,\(^1\) a first-principles theory –akin to Sweet and Parker’s in resistive MHD– has been elusive. Here, we present such a first principles steady-state theory for electron MHD,\(^2\) and its extension to Hall.\(^3\) The theory discretizes the extended MHD equations at the reconnection site, leading to a set of time-dependent ODEs. Their steady-state analysis provides predictions for the scaling of relevant quantities with the dissipation coefficients (e.g, resistivity and hyper-resistivity) and other relevant parameters. In particular, we will show that EMHD admits both elongated and open-X point configurations of the reconnection region, and that the reconnection rate \(E_z\) can be shown not to scale explicitly with the dissipation parameters. This analytic result confirms earlier computational work on the possibility of fast (dissipation-independent) magnetic reconnection in EMHD. We have extended the EMHD results to Hall MHD, and have found a general scaling law for the reconnection rate (and associated length scales) that bridges the gap between resistive and EMHD.

\(^3\)A. N. Simakov, L. Chacón, in preparation

Luis Chacon
Los Alamos National Laboratory

Date submitted: 28 Aug 2007

Electronic form version 1.4