Toward an implicit Drift-Lorentz mover1 R.H. COHEN, A. FRIEDMAN, D.P. GROTE, LLNL, J.-L. VAY, LBNL — In order to efficiently perform particle simulations in systems with widely varying magnetization, we have developed a “drift-Lorentz mover,” which interpolates between full particle dynamics and drift kinetics in such a way as to preserve a physically correct gyroradius and particle drifts for both large and small ratios of the timestep to the cyclotron period2. We are now adding implicitness to the mover and the associated field solver in order to extend the mover’s applicability to systems with plasma frequency exceeding the cyclotron frequency. A first step was adding the polarization charge to the field solver and a two-time-level predictor corrector procedure 3. We outline here two approaches to adding further implicitness. In both, we add a direct-implicit algorithm to the Lorentz portion of the mover; the drift portion can then be treated as in Ref. 3, or fully implicitly, with a modified predictor-corrector procedure. We describe the algorithms, stability analyses, and status of implementation.

1Work performed for the U.S. Department of Energy by U.C. LLNL and U.C. LBNL under contracts W7405-ENG-48 and DE-AC02-05CH11231.

Ronald Cohen
LLNL

Date submitted: 19 Jul 2007

Electronic form version 1.4