DPP07-2007-000652

Abstract for an Invited Paper for the DPP07 Meeting of the American Physical Society

High-Intensity-Laser–Solid Interactions in the Refluxing Limit

P.M. NILSON, Laboratory for Laser Energetics, U. of Rochester

Small mass targets are of interest in high-intensity-laser-solid interactions due to their unique fast-electron transport properties.^{1,2} Electron refluxing in solid-density matter by the Debye sheath fields that are set up at the target surfaces provide a unique environment for the determination of the conversion efficiency of laser energy into fast electrons.³ Previous measurements of the absolute K_{α} yield from copper foils as a function of laser intensity demonstrate excellent agreement with electron refluxing models.^{3,4}In particular, fast-electron conversion efficiencies of around 10% to 20% have been inferred by fitting the absolute K_{α} yields to semi-analytical modeling. It is well known that ionization of the M shell during volumetric heating within such small mass copper targets can cause a deviation in the ratio of the number of emitted K_{β} and K_{α} photons below the cold material limit.⁴ This is a direct consequence of bulk target heating due to fast-electron energy loss. Such a deviation could provide a useful code benchmarking parameter on the energy content of the fast electrons and a consistency check on the laser-electron conversion efficiency. This consistency check, however, has proven elusive experimentally. We demonstrate here for the first time the consistency between the fast-electron conversion efficiencies predicted by these two methods using small mass targets. It is demonstrated that a $3.5 \times$ reduction in the ratio of the number of emitted K_{β} and K_{α} photons is achievable below the cold material limit using 20 \times 20 \times 2 μ m copper targets at laser intensities of 2 \times 10^{19} W cm⁻². These results provide a comparison in preparation for the higher energy-density environments that will be accessible using the future OMEGA EP Laser Facility.⁵ This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreements DE-FC52-92SF19460 and DE-FC02-04ER54789. Contributors: W. Theobald, J. Myatt, M. Storm, O.V. Gotchev, C. Mileham, C. Stoeckl, R. Betti,* D.D. Meyerhofer,* and T.C. Sangster. *Also at the Fusion Science Center for Extreme States of Matter and Fast Ignition.

¹S. P. Hatchett *et al.*, Phys. Plasmas **7**, 2076 (2000).

²R. A. Snavely *et al.*, Phys. Rev. Lett. **85**, 2945 (2000).

³W. Theobald *et al.*, Phys. Plasmas **13**, 043102 (2006).

⁴J. Myatt *et al.*, Phys. Plasmas **14**, 056301 (2007).

⁵C. Stoeckl *et al.*, Fusion Sci. Technol. **49**, 367 (2006)