Electron Temperature Fluctuations in the Core of High-Performance DIII-D Plasmas

A.E. WHITE, UCLA

Electron temperature fluctuations have been measured for the first time in the core of high-performance, neutral-beam-heated DIII-D plasmas. Simultaneous local characterization of temperature and density fluctuations presents an opportunity to challenge theoretical/simulation predictions. Data from long-duration quiescent H-mode plasmas indicate that, at $r/a=0.75$, normalized fluctuation levels are reduced by a factor of 5 below L-mode levels, with a detectability limit of $\leq 0.25\%$. In these QH-mode plasmas, the absolute temperature fluctuation amplitude is observed to decrease by a factor of 2, correlating with increasing electron temperatures and improved electron thermal confinement. Temperature fluctuation levels and frequency spectra, $k_{\parallel} \rho_s \leq 0.5$, are determined via correlation electron cyclotron emission radiometry [1]. In L-mode, temperature fluctuations ($20 < f < 250$ kHz) increase with radius from $\sim 0.5\%$ at $r/a=0.5$ to $\sim 2\%$ at $r/a=0.8$, similar to local \tilde{n} measurements performed simultaneously with the beam emission spectroscopy diagnostic. The evolving frequency spectra reflect a Doppler-shift caused by $E\times B$ plasma rotation that dominates the intrinsic dispersion of the underlying instabilities. Linear gyrokinetic calculations at low-k for these L-mode plasmas indicate increasing growth rate with radius consistent with the observed profile of temperature fluctuations. These initial calculations will be extended to include nonlinear gyrokinetic simulations to provide a more critical comparison between experiment and theory. In particular, variations in the temperature and density fluctuation levels during neutral beam heated L-mode plasmas, with and without electron cyclotron heating, will be compared to code predictions.

Supported by US DOE under DE-FG03-01ER54615, JP333701, and a DOE-ORISE fellowship.