Abstract Submitted for the DPP07 Meeting of The American Physical Society

Magnetic Field Dependence of the Diffusion Coefficient in Asymmetry-Induced Transport¹ D.L. EGGLESTON, J.M. WILLIAMS, Occidental College — The dependence of the asymmetry-induced radial particle flux Γ on axial magnetic field B is complicated by the fact that the field enters the physics in at least two places: in the asymmetry-induced first order radial drift velocity $v_r = E_{\theta}/B$ and in the zeroth order azimuthal drift velocity $v_{\theta} = E_r/B$. To separate these, we assume the latter always enters the physics in the combination $\omega - l\omega_R$ where $\omega_R(r) = v_{\theta}/r$ is the column rotation frequency and ω and l are the asymmetry frequency and azimuthal mode number, respectively. We then select from a Γ vs r vs ω data set those points where $\omega - l\omega_R = 0$, thus insuring that any function of this combination is constant. When the selected flux is plotted versus the density gradient ∇n , a roughly linear dependence is observed, showing that our assumption is valid and that we have isolated the diffusive contribution to the transport. The slope of a least-squares fitted line then gives the diffusion coefficient D. Varying the magnetic field, we find $D \propto B^{-1.33\pm0.12}$. This does not match the scaling predicted by resonant particle transport theory 2 .

¹Supported by DOE grant DE-FG02-06ER54882 and Occidental College ²D.L. Eggleston and T.M. O'Neil, Phys. Plasmas 6, 2699 (1999).

Dennis Eggleston Occidental College

Date submitted: 19 Jul 2007

Electronic form version 1.4