Observation of $n>1$ Mode During ELM-Driven RWM Experiments in DIII-D

J. KIM, Y. IN, J.S. KIM, FAR-TECH Inc., M. OKABAYASHI, PPPL, E.J. STRAIT, General Atomics, A.M. GAROFALO, H. REIMERDES, Columbia U. — In recent resistive wall mode (RWM) experiments in DIII-D, edge localized modes (ELMs) were found to trigger RWMs in high rotation plasmas, which are well above the rotation threshold [1]. Interestingly, the ELM-induced $n=1$ perturbations are almost always accompanied by significant amounts of $n=3$ modes. While an $n=1$ ELM-driven RWM grows but can be suppressed by active feedback, the influence of $n=3$ mode needs to be investigated. A clear example that an ELM-driven $n=3$ mode grew without being hindered by $n=1$ feedback will be presented. It is noteworthy that the $n=3$ mode appeared to cause β and rotation collapses, similar to $n=1$ RWM. Detailed MHD analysis is in progress to investigate whether the $n=3$ mode is attributable to $n=3$ RWM in the vicinity of $n=1$ wall-stabilized plasmas [2]. We will discuss the stability calculation results and the details of the $n=3$ mode observation. [1] E.J. Strait, et al., Bull. Am. Phys. Soc. 50, 79 (2005). [2] Y. In, et al., to be submitted for publication.

Supported by US DOE under DE-FG02-03ER83657, DE-FC02-04ER54698, DE-FG02-89ER53297, and DE-AC02-76CH03073.

J. Kim
FAR-TECH Inc.