Separation of momentum diffusion and pinch using n=3 non-resonant braking perturbations on NSTX

W. DAVIS, W.M. SOLOMON, S.M. KAYE, R.E. BELL, B.P. LEBLANC, J.E. MENARD, Princeton Plasma Physics Laboratory, Princeton University, Princeton NJ, S.A. SABBAGH, Dept. of Applied Physics, Columbia University, NYC, NY — Perturbative studies of momentum transport have been made on NSTX using n=3 non-resonant braking as a means of perturbing the rotation profile. The braking was applied for 50 ms during a relatively MHD-quiescent phase of the discharge, after which the evolution of the plasma rotation was measured. The non-local torque perturbation created by the n=3 error field created some distortion to the toroidal rotation profile, allowing the separation of momentum flux caused by diffusion (proportional to the gradient in the toroidal rotation) and a momentum pinch (proportional to the toroidal rotation). Preliminary analysis indicates the necessity of a momentum pinch to explain the profile evolution. The effect of off-diagonal terms in the momentum balance equation (e.g., $\nabla \left(T_i \right)$, $\nabla \left(n_e \right)$) are also considered.

1This work supported by U.S. DOE Contract # DE-AC02-76CH03073.