Perturbative Particle Simulation Studies of Periodically Focused Intense Charged Particle Beams1 \textsc{Weihua Zhou, Hong Qin, Ronald Davidson}, Princeton Plasma Physics Laboratory — High intensity charged particle beam propagation in a periodic focusing lattice has been studied numerically using a model in which the beam equilibrium and dynamical behavior are described self-consistently by the nonlinear Vlasov-Maxwell equations. To carry out this investigation, the Beam Equilibrium Stability and Transport (BEST) code, which uses a 3D low-noise perturbative particle simulation method, has been extended to periodic-focusing systems. The scheme begins with a smooth-focusing lattice, which is the smooth-focusing approximation for the periodic lattice, and adiabatically replaces the smooth-focusing lattice by the periodic-focusing lattice. Using this approach, periodic-focusing solenoidal configurations have been investigated using a slow turn-on time to minimize beam mismatch, and periodic-focusing quadrupole configurations have also been studied using this approach.

1This research was supported by the U.S. DoE contract \#DE-AC02-76-CHO3073.