Abstract Submitted for the DPP07 Meeting of The American Physical Society

Phase-space distribution of accelerated electrons in Weibelmediated relativistic GRB shocks¹ S. GRAHAM, S. POTHAPRAGADA, S. REYNOLDS, M.V. MEDVEDEV, University of Kansas — The shock model of gamma-ray bursts (GRBs) contains two equipartition parameters: the magnetic energy density and the kinetic energy density of the electrons relative to the total energy density of the shock, ϵ_B and ϵ_e , respectively. These are free parameters within the model. Whereas the Weibel shock theory and PIC simulations fix ϵ_B at the level of $\sim \text{few} \times (10^{-3}...10^{-4})$, no understanding of ϵ_e existed until recently. Medvedev (2006) has demonstrated that it inevitably follows from the Weibel shock theory that $\epsilon_e \simeq \sqrt{\epsilon_B}$. Extrapolating the theory to GRB afterglow shocks, we find that observational data agree with our theoretical prediction. It has been suggested that the $\epsilon_e - \epsilon_B$ relation can be used to reduce the number of free parameters in afterglow models. Here we further develop the model of non-Fermi acceleration of electrons in prompt GRBs. We developed a numerical code, which computes full phase space distribution of electrons in Weibel electromagnetic fields. This distribution is further used to compute the electron energy distribution, the distribution over pitch-angle, the angular pattern of jitter emissivity, etc.

¹Supported by DoE grants DE-FG02-04ER54790 and DE-FG02-07ER54940 and by NASA grant NNX07AJ50G.

Mikhail Medvedev

Date submitted: 20 Jul 2007 Electronic form version 1.4