Abstract Submitted for the DPP07 Meeting of The American Physical Society

Phase-Coherent Measurement of Particle Distributions in Electron Acoustic Waves.¹ C.F. DRISCOLL, F. ANDEREGG, R.B. LYNCH, UCSD — Phase-coherent velocity distribution functions $f(v_z)$ are measured by Laser Induced Fluorescence, for standing "electron acoustic" waves in pure ion plasmas. These (mis-named) waves are the lower-frequency branch of standard electrostatic plasma waves, with phase velocity $v_{\phi} \approx 1.3\bar{v}$. The waves are necessarily nonlinear so as to flatten the distribution at v_{ϕ} , thereby voiding the otherwise strong Landau damping. Our measurements are performed on $m_{\theta}=0$, $m_z=1$ waves driven to moderately large amplitude, i.e. $e\delta\phi \ge 0.1T$. Received LIF photons are accumulated in 8 phase bins, according to the instantaneous received phase of the wall electric field. The phase-coherent $f(v_z)$ shows 1) particle sloshing, $\delta \langle v \rangle$, as expected; 2) phase reversal of δf at v=0 and $v=v_{\phi}$, in general correspondence with the linear perspective of $\delta f = (\delta f_0/\partial v)/(v - v_{\phi})$; and 3) plateaux around v_{ϕ} with velocity widths as expected from wave-trapping theory. Measurements will be compared to traveling wave trapping theory and to standing wave particle simulations.

¹Supported by NSF grant PHY-0354979.

Charles F. Driscoll UCSD

Date submitted: 22 Jul 2007

Electronic form version 1.4