Abstract Submitted for the DPP07 Meeting of The American Physical Society

SOL width scale lengths in NSTX JOON-WOOK AHN, JOSE BOEDO, UCSD, RAJESH MAINGI, ORNL, VLAD SOUKHANOVSKII, LLNL, HENRY KUGEL, LANE ROQUEMORE, PPPL — The SOL T_e and n_e profiles have been investigated with a mid-plane fast reciprocating probe in NSTX. The SOL plasma consists of two regions; a region close to the LCFS where a steep gradient of the profile is observed (*ie* near SOL region) and a region further away from the LCFS where a flatter profile is observed (*ie* far SOL region). It was observed that the near SOL T_e and n_e decay lengths (λ_{Te} and λ_{ne}) became significantly longer in L-mode compared to H-mode (a factor of ~ 2 increase in λ_{Te} and ~ 3 increase in λ_{ne}). It was found that both λ_{Te} and λ_{ne} in the near SOL decrease with increasing plasma current (I_p) in H-mode (from $\lambda_{Te} \sim 3$ cm to ~ 1 cm and $\lambda_{ne} \sim 2$ cm to ~1cm with I_p variation from 0.8MA to 1MA). Near SOL λ_{Te} and λ_{ne} in L-mode increased ($\lambda_{Te} \sim 0.7$ cm to ~ 1.1 cm and $\lambda_{ne} \sim 1.5$ cm to ~ 2.1 cm) with increasing line averaged density (from 2.7 to $3.1 \times 10^{13} \text{cm}^{-3}$) and decreased ($\lambda_{Te} \sim 1.7 \text{cm}$ to 0.4 cm and $\lambda_{ne} \sim 1.3$ cm to 0.5 cm) with increasing input power (P_{NBI} ~1MW to 4MW). A comparison with Thomson Scattering (TS) data shows a reasonably good match for T_e and n_e profiles. This work was supported by U.S. DOE contract # DE-FG02-03ER54731 and DE-AC02-76CH03073.

> Joon-Wook Ahn UCSD

Date submitted: 23 Jul 2007

Electronic form version 1.4